Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35808044

RESUMO

In the last decades, nanotechnology-based tools have attracted attention in the scientific community, due to their potential applications in different areas from medicine to engineering, but several toxicological effects mediated by these advanced materials have been shown on the environment and human health. At present, the effects of engineered nanomaterials on gametogenesis have not yet been well understood. In the present study, we addressed this issue using the yeast Saccharomyces cerevisiae as a model eukaryote to evaluate the effects of cadmium sulfide quantum dots (CdS QDs) on sporulation, a process equivalent to gametogenesis in higher organisms. We have observed that CdS QDs cause a strong inhibition of spore development with the formation of aberrant, multinucleated cells. In line with these observations, treatment with CdS QDs down-regulates genes encoding crucial regulators of sporulation process, in particular, the transcription factor Ndt80 that coordinates different genes involved in progression through the meiosis and spore morphogenesis. Down-regulation of NDT80 mediated by CdS QDs causes a block of the meiotic cell cycle and a return to mitosis, leading to the formation of aberrant, multinucleated cells. These results indicate that CdS QDs inhibit gametogenesis in an irreversible manner, with adverse effects on cell-cycle progression.

2.
Environ Sci Technol ; 55(15): 10769-10783, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34308629

RESUMO

A thorough understanding of the implications of chronic low-dose exposure to engineered nanomaterials through the food chain is lacking. The present study aimed to characterize such a response in Cucurbita pepo L. (zucchini) upon exposure to a potential nanoscale fertilizer: copper oxide (CuO) nanoparticles. Zucchini was grown in soil amended with nano-CuO, bulk CuO (100 mg Kg-1), and CuSO4 (320 mg Kg-1) from germination to flowering (60 days). Nano-CuO treatment had no impact on plant morphology or growth nor pollen formation and viability. The uptake of Cu was comparable in the plant tissues under all treatments. RNA-seq analyses on vegetative and reproductive tissues highlighted common and nanoscale-specific components of the response. Mitochondrial and chloroplast functions were uniquely modulated in response to nanomaterial exposure as compared with conventional bulk and salt forms. X-ray absorption spectroscopy showed that the Cu local structure changed upon nano-CuO internalization, suggesting potential nanoparticle biotransformation within the plant tissues. These findings demonstrate the potential positive physiological, cellular, and molecular response related to nano-CuO application as a plant fertilizer, highlighting the differential mechanisms involved in the exposure to Cu in nanoscale, bulk, or salt forms. Nano-CuO uniquely stimulates plant response in a way that can minimize agrochemical inputs to the environment and therefore could be an important strategy in nanoenabled agriculture.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Nanoestruturas , Cobre/toxicidade , Nanopartículas Metálicas/toxicidade , Óxidos , Raízes de Plantas , Solo
3.
Part Fibre Toxicol ; 18(1): 1, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407654

RESUMO

BACKGROUND: Nanotoxicology is an increasingly relevant field and sound paradigms on how inhaled nanoparticles (NPs) interact with organs at the cellular level, causing harmful conditions, have yet to be established. This is particularly true in the case of the cardiovascular system, where experimental and clinical evidence shows morphological and functional damage associated with NP exposure. Giving the increasing interest on cobalt oxide (Co3O4) NPs applications in industrial and bio-medical fields, a detailed knowledge of the involved toxicological effects is required, in view of assessing health risk for subjects/workers daily exposed to nanomaterials. Specifically, it is of interest to evaluate whether NPs enter cardiac cells and interact with cell function. We addressed this issue by investigating the effect of acute exposure to Co3O4-NPs on excitation-contraction coupling in freshly isolated rat ventricular myocytes. RESULTS: Patch clamp analysis showed instability of resting membrane potential, decrease in membrane electrical capacitance, and dose-dependent decrease in action potential duration in cardiomyocytes acutely exposed to Co3O4-NPs. Motion detection and intracellular calcium fluorescence highlighted a parallel impairment of cell contractility in comparison with controls. Specifically, NP-treated cardiomyocytes exhibited a dose-dependent decrease in the fraction of shortening and in the maximal rate of shortening and re-lengthening, as well as a less efficient cytosolic calcium clearing and an increased tendency to develop spontaneous twitches. In addition, treatment with Co3O4-NPs strongly increased ROS accumulation and induced nuclear DNA damage in a dose dependent manner. Finally, transmission electron microscopy analysis demonstrated that acute exposure did lead to cellular internalization of NPs. CONCLUSIONS: Taken together, our observations indicate that Co3O4-NPs alter cardiomyocyte electromechanical efficiency and intracellular calcium handling, and induce ROS production resulting in oxidative stress that can be related to DNA damage and adverse effects on cardiomyocyte functionality.


Assuntos
Cobalto/toxicidade , Miócitos Cardíacos , Nanopartículas , Óxidos/toxicidade , Animais , Masculino , Nanopartículas/toxicidade , Estresse Oxidativo , Ratos , Ratos Wistar
4.
Sci Rep ; 10(1): 10524, 2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32601343

RESUMO

Thiosemicarbazones (TSC) and their metal complexes display diverse biological activities and are active against multiple pathological conditions ranging from microbial infections to abnormal cell proliferation. Ribonucleotide reductase (RNR) is considered one of the main targets of TSCs, yet, the existence of additional targets, differently responsible for the multifaceted activities of TSCs and their metal complexes has been proposed. To set the basis for a more comprehensive delineation of their mode of action, we chemogenomically profiled the cellular effects of bis(citronellalthiosemicarbazonato)nickel(II) [Ni(S-tcitr)2] using the unicellular eukaryote Saccharomyces cerevisiae as a model organism. Two complementary genomic phenotyping screens led to the identification of 269 sensitive and 56 tolerant deletion mutant strains and of 14 genes that when overexpressed make yeast cells resistant to an otherwise lethal concentration of Ni(S-tcitr)2. Chromatin remodeling, cytoskeleton organization, mitochondrial function and iron metabolism were identified as lead cellular processes responsible for Ni(S-tcitr)2 toxicity. The latter process, and particularly glutaredoxin-mediated iron loading of RNR, was found to be affected by Ni(S-tcitr)2. Given the multiple pathways regulated by glutaredoxins, targeting of these proteins by Ni(S-tcitr)2 can negatively affect various core cellular processes that may critically contribute to Ni(S-tcitr)2 cytotoxicity.


Assuntos
Complexos de Coordenação/farmacologia , Níquel , Tiossemicarbazonas/farmacologia , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Humanos , Ferro/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Saccharomyces cerevisiae
5.
Nanomaterials (Basel) ; 10(7)2020 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-32708373

RESUMO

Previous work has demonstrated that precipitated (NM-200) and pyrogenic (NM-203) Amorphous Silica Nanoparticles (ASNPs) elicit the inflammatory activation of murine macrophages, with more pronounced effects observed with NM-203. Here, we compare the effects of low doses of NM-200 and NM-203 on human macrophage-like THP-1 cells, assessing how the pre-exposure to these nanomaterials affects the cell response to lipopolysaccharide (LPS). Cell viability was affected by NM-203, but not by NM-200, and only in the presence of LPS. While NM-203 stimulated mTORC1, neither ASNPs activated NFκB or the transcription of its target genes PTGS2 and IL1B. NM-200 and NM-203 caused a block of the autophagic flux and inhibited the LPS-dependent increase of Glutamine Synthetase (GS) expression. Both ASNPs suppressed the activation of caspase-1, delaying the LPS-dependent secretion of IL-1ß. Thus, ASNPs modulate several important pathways in human macrophages, altering their response to LPS. NM-203 had larger effects on autophagy, mTORC1 activity and GS expression than NM-200, confirming the higher biological activity of pyrogenic ASNPs when compared with precipitated ASNPs.

6.
Nanomaterials (Basel) ; 10(2)2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013138

RESUMO

Over the last decades, cerium oxide nanoparticles (CeO2 NPs) have gained great interest due to their potential applications, mainly in the fields of agriculture and biomedicine. Promising effects of CeO2 NPs are recently shown in some neurodegenerative diseases, but the mechanism of action of these NPs in Parkinson's disease (PD) remains to be investigated. This issue is addressed in the present study by using a yeast model based on the heterologous expression of the human α-synuclein (α-syn), the major component of Lewy bodies, which represent a neuropathological hallmark of PD. We observed that CeO2 NPs strongly reduce α-syn-induced toxicity in a dose-dependent manner. This effect is associated with the inhibition of cytoplasmic α-syn foci accumulation, resulting in plasma membrane localization of α-syn after NP treatment. Moreover, CeO2 NPs counteract the α-syn-induced mitochondrial dysfunction and decrease reactive oxygen species (ROS) production in yeast cells. In vitro binding assay using cell lysates showed that α-syn is adsorbed on the surface of CeO2 NPs, suggesting that these NPs may act as a strong inhibitor of α-syn toxicity not only acting as a radical scavenger, but through a direct interaction with α-syn in vivo.

7.
Mol Nutr Food Res ; 64(5): e1900890, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31914208

RESUMO

SCOPE: Amyloid-ß oligomers (AßO) are causally related to Alzheimer's disease (AD). Dietary natural compounds, especially flavonoids and flavan-3-ols, hold great promise as potential AD-preventive agents but their host and gut microbiota metabolism complicates identification of the most relevant bioactive species. This study aims to investigate the ability of a comprehensive set of phenyl-γ-valerolactones (PVL), the main circulating metabolites of flavan-3-ols and related dietary compounds in humans, to prevent AßO-mediated toxicity. METHODS AND RESULTS: The anti-AßO activity of PVLs is examined in different cell model systems using a highly toxic ß-oligomer-forming polypeptide (ß23) as target toxicant. Multiple PVLs, and particularly the monohydroxylated 5-(4'-hydroxyphenyl)-γ-valerolactone metabolite [(4'-OH)-PVL], relieve ß-oligomer-induced cytotoxicity in yeast and mammalian cells. As revealed by atomic force microscopy (AFM) and other in vitro assays, (4'-OH)-PVL interferes with AßO (but not fibril) assembly and actively remodels preformed AßOs into nontoxic amorphous aggregates. In keeping with the latter mode of action, treatment of AßOs with (4'-OH)-PVL prior to brain injection strongly reduces memory deterioration as well as neuroinflammation in a mouse model of AßO-induced memory impairment. CONCLUSION: PVLs, which have been validated as biomarkers of the dietary intake of flavan-3-ols, lend themselves as novel AßO-selective, candidate AD-preventing compounds.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Lactonas/farmacologia , Transtornos da Memória/prevenção & controle , Doença de Alzheimer/etiologia , Doença de Alzheimer/prevenção & controle , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/toxicidade , Animais , Modelos Animais de Doenças , Flavonoides/química , Células HEK293 , Humanos , Lactonas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/metabolismo , Leveduras/efeitos dos fármacos
8.
J Med Genet ; 55(9): 599-606, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29764912

RESUMO

OBJECTIVE: To identify the genetic basis of a childhood-onset syndrome of variable severity characterised by progressive spinocerebellar ataxia, mental retardation, psychotic episodes and cerebellar atrophy. METHODS: Identification of the underlying mutations by whole exome and whole genome sequencing. Consequences were examined in patients' cells and in yeast. RESULTS: Two brothers from a consanguineous Palestinian family presented with progressive spinocerebellar ataxia, mental retardation and psychotic episodes. Serial brain imaging showed severe progressive cerebellar atrophy. Whole exome sequencing revealed a novel mutation: pitrilysin metallopeptidase 1 (PITRM1) c.2795C>T, p.T931M, homozygous in the affected children and resulting in 95% reduction in PITRM1 protein. Whole genome sequencing revealed a chromosome X structural rearrangement that also segregated with the disease. Independently, two siblings from a second Palestinian family presented with similar, somewhat milder symptoms and the same PITRM1 mutation on a shared haplotype. PITRM1T931M carrier frequency was 0.027 (3/110) in the village of the first family evaluated, and 0/300 among Palestinians from other locales. PITRM1 is a mitochondrial matrix enzyme that degrades 10-65 amino acid oligopeptides, including the mitochondrial fraction of amyloid-beta peptide. Analysis of peptide cleavage activity by the PITRM1T931M protein revealed a significant decrease in the degradation capacity specifically of peptides ≥40 amino acids. CONCLUSION: PITRM1T931M results in childhood-onset recessive cerebellar pathology. Severity of PITRM1-related disease may be affected by the degree of impairment in cleavage of mitochondrial long peptides. Disruption and deletion of X linked regulatory segments may also contribute to severity.


Assuntos
Doenças Cerebelares/genética , Cerebelo/patologia , Mutação com Perda de Função , Metaloendopeptidases/genética , Adolescente , Idade de Início , Árabes/genética , Atrofia , Doenças Cerebelares/enzimologia , Cerebelo/enzimologia , Criança , Humanos , Masculino , Mitocôndrias/enzimologia , Proteínas Mitocondriais/genética , Linhagem , Sequenciamento do Exoma , Sequenciamento Completo do Genoma , Adulto Jovem
9.
Environ Sci Technol ; 52(5): 2451-2467, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29377685

RESUMO

The increasing use of engineered nanomaterials (ENMs) raises questions regarding their environmental impact. Improving the level of understanding of the genetic and molecular basis of the response to ENM exposure in biota is necessary to accurately assess the true risk to sensitive receptors. The aim of this Review is to compare the plant response to several metal-based ENMs widely used, such as quantum dots, metal oxides, and silver nanoparticles (NPs), integrating available "omics" data (transcriptomics, miRNAs, and proteomics). Although there is evidence that ENMs can release their metal components into the environment, the mechanistic basis of both ENM toxicity and tolerance is often distinct from that of metal ions and bulk materials. We show that the mechanisms of plant defense against ENM stress include the modification of root architecture, involvement of specific phytohormone signaling pathways, and activation of antioxidant mechanisms. A critical meta-analysis allowed us to identify relevant genes, miRNAs, and proteins involved in the response to ENMs and will further allow a mechanistic understanding of plant-ENM interactions.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Pontos Quânticos , Plantas , Prata
10.
Sci Rep ; 7(1): 16195, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29170393

RESUMO

The in vivo monitoring of key plant physiology parameters will be a key enabler of precision farming. Here, a biomimetic textile-based biosensor, which can be inserted directly into plant tissue is presented: the device is able to monitor, in vivo and in real time, variations in the solute content of the plant sap. The biosensor has no detectable effect on the plant's morphology even after six weeks of continuous operation. The continuous monitoring of the sap electrolyte concentration in a growing tomato plant revealed a circadian pattern of variation. The biosensor has the potential to detect the signs of abiotic stress, and therefore might be exploited as a powerful tool to study plant physiology and to increase tomato growth sustainability. Also, it can continuously communicate the plant health status, thus potentially driving the whole farm management in the frame of smart agriculture.


Assuntos
Agricultura , Técnicas Biossensoriais , Técnicas Eletroquímicas/métodos , Biomimética , Fenômenos Fisiológicos Vegetais
11.
Food Chem Toxicol ; 108(Pt A): 257-266, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28807876

RESUMO

The mycotoxin zearalenone may contaminate food and feed worldwide upon infections by Fusarium spp. of plants and raw materials intended for human and animal consumption. Currently, contamination by zearalenone and congeners pose concern for health due to xenoestrogenic effects. However, while zearalenone and the main reduced metabolites are well-known xenoestrogens, some plant metabolites that may enter the food chain have been observed aside. Among them, zearalenone-14-glucoside may be abundant in the edible parts of infected plants, thereby entering significantly the human diet and animal feeding. On the basis of previous works, the lack of xenoestrogenicity for this compound per se was taken for granted, while neglecting the direct proof of estrogenic activity and considering the hydrolysis as a possible source of estrogenically active metabolites. The present work investigated the xenoestrogenicity of zearalenone-14-glucoside, in comparison to zearalenone, deepening the underlying molecular mechanisms through an integrated in vitro/in silico approach. On the basis of our results, zearalenone-14-glucoside effectively stimulated a xenoestrogenic response in cells, but such stimulus can be entirely attributable to the hydrolysis phenomenon, as the glycosylated form turned out to be unable to effectively bind and activate the estrogens receptors.


Assuntos
Estrogênios/toxicidade , Glucuronídeos/toxicidade , Zearalenona/análogos & derivados , Bioensaio , Neoplasias da Mama , Sobrevivência Celular/efeitos dos fármacos , Simulação por Computador , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/metabolismo , Feminino , Análise de Alimentos , Contaminação de Alimentos , Humanos , Células MCF-7 , Modelos Biológicos , Ligação Proteica , Conformação Proteica , Zearalenona/toxicidade
12.
Nucleic Acids Res ; 43(17): 8368-80, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26240381

RESUMO

To gain a wider view of the pathways that regulate mitochondrial function, we combined the effect of heat stress on respiratory capacity with the discovery potential of a genome-wide screen in Saccharomyces cerevisiae. We identified 105 new genes whose deletion impairs respiratory growth at 37°C by interfering with processes such as transcriptional regulation, ubiquitination and cytosolic tRNA wobble uridine modification via 5-methoxycarbonylmethyl-2-thiouridine formation. The latter process, specifically required for efficient decoding of AA-ending codons under stress conditions, was covered by multiple genes belonging to the Elongator (e.g. ELP3) and urmylation (e.g., NCS6) pathways. ELP3 or NCS6 deletants had impaired mitochondrial protein synthesis. Their respiratory deficiency was selectively rescued by overexpression of tRNA(Lys) UUU as well by overexpression of genes (BCK1 and HFM1) with a strong bias for the AAA codon read by this tRNA. These data extend the mitochondrial regulome, demonstrate that heat stress can impair respiration by disturbing cytoplasmic translation of proteins critically involved in mitochondrial function and document, for the first time, the involvement in such process of the Elongator and urmylation pathways. Given the conservation of these pathways, the present findings may pave the way to a better understanding of the human mitochondrial regulome in health and disease.


Assuntos
Histona Acetiltransferases/genética , Mitocôndrias/metabolismo , RNA de Transferência de Lisina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Estresse Fisiológico/genética , Respiração Celular , Códon , Citocromos/química , Citoplasma/metabolismo , Deleção de Genes , Genoma Fúngico , Temperatura Alta , Mitocôndrias/genética , Mutação , Fosforilação Oxidativa , Fenótipo , RNA de Transferência de Lisina/química , Saccharomyces cerevisiae/metabolismo , Uridina/metabolismo
13.
Sci Rep ; 4: 4618, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24714650

RESUMO

Amyloid precursor protein (APP) intracellular domain (AICD) is a product of APP processing with transcriptional modulation activity, whose overexpression causes various Alzheimer's disease (AD)-related dysfunctions. Here we report that 1-(3',4'-dichloro-2-fluoro[1,1'-biphenyl]-4-yl)-cyclopropanecarboxylic acid) (CHF5074), a compound that favorably affects neurodegeneration, neuroinflammation and memory deficit in transgenic mouse models of AD, interacts with the AICD and impairs its nuclear activity. In neuroglioma-APPswe cells, CHF5074 shifted APP cleavage from Aß42 to the less toxic Aß38 peptide without affecting APP-C-terminal fragment, nor APP levels. As revealed by photoaffinity labeling, CHF5074 does not interact with γ-secretase, but binds to the AICD and lowers its nuclear translocation. In vivo treatment with CHF5074 reduced AICD occupancy as well as histone H3 acetylation levels and transcriptional output of the AICD-target gene KAI1. The data provide new mechanistic insights on this compound, which is under clinical investigation for AD treatment/prevention, as well as on the contribution of the AICD to AD pathology.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ciclopropanos/farmacologia , Flurbiprofeno/análogos & derivados , Fragmentos de Peptídeos/metabolismo , Acetilação , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/prevenção & controle , Linhagem Celular Tumoral , Flurbiprofeno/farmacologia , Histonas/metabolismo , Humanos , Proteína Kangai-1/biossíntese , Proteína Kangai-1/genética , Estrutura Terciária de Proteína , Transcrição Gênica
14.
Arch Biochem Biophys ; 559: 62-7, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24657077

RESUMO

Several plant-derived molecules, referred to as phytoestrogens, are thought to mimic the actions of endogenous estrogens. Among these, quercetin, one of the most widespread flavonoids in the plant kingdom, has been reported as estrogenic in some occasions. However, quercetin occurs in substantial amounts as glycosides such as quercetin-3-O-glucoside (isoquercitrin) and quercetin-3-O-rutinoside (rutin) in dietary sources. It is now well established that quercetin undergoes substantial phase II metabolism after ingestion by humans, with plasma metabolites after a normal dietary intake rarely exceeding nmol/L concentrations. Therefore, attributing phytoestrogenic activity to flavonoids without taking into account the fact that it is their phase II metabolites that enter the circulatory system, will almost certainly lead to misleading conclusions. With the aim of clarifying the above issue, the goal of the present study was to determine if plant-associated quercetin glycosides and human phase II quercetin metabolites, actually found in human biological fluids after intake of quercetin containing foods, are capable of interacting with the estrogen receptors (ER). To this end, we used a yeast-based two-hybrid system and an estrogen response element-luciferase reporter assay in an ER-positive human cell line (MCF-7) to probe the ER interaction capacities of quercetin and its derivatives. Our results show that quercetin-3-O-glucuronide, one of the main human phase II metabolites produced after intake of dietary quercetin, displays ERα- and ERß-dependent estrogenic activity, the functional consequences of which might be related to the protective activity of diets rich in quercetin glycosides.


Assuntos
Neoplasias da Mama/patologia , Glucuronídeos/química , Fitoestrógenos/química , Fitoestrógenos/farmacologia , Quercetina/química , Quercetina/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Humanos , Células MCF-7
15.
J Exp Bot ; 65(4): 1153-63, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24449382

RESUMO

Bryophytes, a paraphyletic group which includes liverworts, mosses, and hornworts, have been stated as land plants that under metal stress (particularly cadmium) do not synthesize metal-binding peptides such as phytochelatins. Moreover, very little information is available to date regarding phytochelatin synthesis in charophytes, postulated to be the direct ancestors of land plants, or in lycophytes, namely very basal tracheophytes. In this study, it was hypothesized that basal land plants and charophytes have the capability to produce phytochelatins and possess constitutive and functional phytochelatin synthases. To verify this hypothesis, twelve bryophyte species (six liverworts, four mosses, and two hornworts), three charophytes, and two lycophyte species were exposed to 0-36 µM cadmium for 72 h, and then assayed for: (i) glutathione and phytochelatin quali-quantitative content by HPLC and mass spectrometry; (ii) the presence of putative phytochelatin synthases by western blotting; and (iii) in vitro activity of phytochelatin synthases. Of all the species tested, ten produced phytochelatins in vivo, while the other seven did not. The presence of a constitutively expressed and functional phytochelatin synthase was demonstrated in all the bryophyte lineages and in the lycophyte Selaginella denticulata, but not in the charophytes. Hence, current knowledge according to phytochelatins have been stated as being absent in bryophytes was therefore confuted by this work. It is argued that the capability to synthesize phytochelatins, as well as the presence of active phytochelatin synthases, are ancestral (plesiomorphic) characters for basal land plants.


Assuntos
Aminoaciltransferases/genética , Cádmio/farmacologia , Embriófitas/enzimologia , Fitoquelatinas/metabolismo , Aminoaciltransferases/metabolismo , Briófitas/efeitos dos fármacos , Briófitas/enzimologia , Briófitas/genética , Carofíceas/efeitos dos fármacos , Carofíceas/enzimologia , Carofíceas/genética , Embriófitas/efeitos dos fármacos , Embriófitas/genética , Glutationa/química , Glutationa/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Filogenia , Fitoquelatinas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espectrometria de Massas em Tandem , Traqueófitas/efeitos dos fármacos , Traqueófitas/enzimologia , Traqueófitas/genética
16.
Blood ; 119(26): 6259-67, 2012 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-22286198

RESUMO

MicroRNAs (miRNAs) inhibit HIV-1 expression by either modulating host innate immunity or by directly interfering with viral mRNAs. We evaluated the expression of 377 miRNAs in CD4(+) T cells from HIV-1 élite long-term nonprogressors (éLTNPs), naive patients, and multiply exposed uninfected (MEU) patients, and we observed that the éLTNP patients clustered with naive patients, whereas all MEU subjects grouped together. The discriminatory power of miRNAs showed that 21 miRNAs significantly differentiated éLTNP from MEU patients and 23 miRNAs distinguished naive from MEU patients, whereas only 1 miRNA (miR-155) discriminated éLTNP from naive patients. We proposed that miRNA expression may discriminate between HIV-1-infected and -exposed but negative patients. Analysis of miRNAs expression after exposure of healthy CD4(+) T cells to gp120 in vitro confirmed our hypothesis that a miRNA profile could be the result not only of a productive infection but also of the exposure to HIV-1 products that leave a signature in immune cells. The comparison of normalized Dicer and Drosha expression in ex vivo and in vitro condition revealed that these enzymes did not affect the change of miRNA profiles, supporting the existence of a Dicer-independent biogenesis pathway.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Infecções por HIV/genética , Infecções por HIV/imunologia , HIV-1/fisiologia , MicroRNAs/genética , Adulto , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/patologia , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína gp120 do Envelope de HIV/farmacologia , Infecções por HIV/patologia , Infecções por HIV/virologia , Humanos , Masculino , MicroRNAs/metabolismo , Análise em Microsséries , Pessoa de Meia-Idade , Fatores de Tempo , Carga Viral
17.
Fungal Genet Biol ; 48(6): 573-84, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21094264

RESUMO

Ectomycorrhizal fungi are thought to enhance mineral nutrition of their host plants and to confer increased tolerance toward toxic metals. However, a global view of metal homeostasis-related genes and pathways in these organisms is still lacking. Building upon the genome sequence of Tuber melanosporum and on transcriptome analyses, we set out to systematically identify metal homeostasis-related genes in this plant-symbiotic ascomycete. Candidate gene products (101) were subdivided into three major functional classes: (i) metal transport (58); (ii) oxidative stress defence (32); (iii) metal detoxification (11). The latter class includes a small-size metallothionein (TmelMT) that was functionally validated in yeast, and phytochelatin synthase (TmelPCS), the first enzyme of this kind to be described in filamentous ascomycetes. Recombinant TmelPCS was shown to support GSH-dependent, metal-activated phytochelatin synthesis in vitro and to afford increased Cd/Cu tolerance to metal hypersensitive yeast strains. Metal transporters, especially those related to Cu and Zn trafficking, displayed the highest expression levels in mycorrhizae, suggesting extensive translocation of both metals to root cells as well as to fungal metalloenzymes (e.g., laccase) that are strongly upregulated in symbiotic hyphae.


Assuntos
Aminoaciltransferases/genética , Ascomicetos/genética , Proteínas Fúngicas/genética , Genoma Fúngico , Metais/metabolismo , Micorrizas/genética , Aminoaciltransferases/metabolismo , Ascomicetos/classificação , Ascomicetos/enzimologia , Ascomicetos/metabolismo , Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Micorrizas/classificação , Micorrizas/enzimologia , Micorrizas/metabolismo , Filogenia
18.
Genomics ; 96(5): 272-80, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20732410

RESUMO

We report the results of a chemogenomic profiling aimed to explore the mode of action of a quinolic analogue of the p300 histone acetyltransferase (HAT) inhibitor anacardic acid, named MC1626. This compound reduced histone H3 acetylation in a dose-dependent manner and the HATs Gcn5 and Rtt109, which specifically target H3 lysines, were the only ones that caused chemical-genetic synthetic sickness with MC1626 when mutated. Deletion of specific Gcn5 (e.g., Ada1) and Rtt109 (e.g., Asf1) multiprotein complex components also enhanced MC1626 sensitivity. In addition to N-terminal H3 lysines, MC1626 inhibits H3-K56 acetylation, a histone modification that, in yeast, is exclusively supported by Rtt109 and indirectly influences DNA integrity. Several DNA repair mutants were found to be sensitive to MC1626. Functional links between histone acetylation impairment by MC1626 and mitochondrion as well as cytoskeleton functionality were also revealed, thus extending the range of non-nuclear processes that are influenced by histone acetylation.


Assuntos
Perfilação da Expressão Gênica , Histona Acetiltransferases/antagonistas & inibidores , Histona Acetiltransferases/genética , Mutação/efeitos dos fármacos , Quinolinas/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Deleção de Genes , Histona Acetiltransferases/metabolismo , Histonas/efeitos dos fármacos , Histonas/genética , Histonas/metabolismo , Testes de Sensibilidade Microbiana/métodos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Quinolinas/química , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Nature ; 464(7291): 1033-8, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20348908

RESUMO

The Périgord black truffle (Tuber melanosporum Vittad.) and the Piedmont white truffle dominate today's truffle market. The hypogeous fruiting body of T. melanosporum is a gastronomic delicacy produced by an ectomycorrhizal symbiont endemic to calcareous soils in southern Europe. The worldwide demand for this truffle has fuelled intense efforts at cultivation. Identification of processes that condition and trigger fruit body and symbiosis formation, ultimately leading to efficient crop production, will be facilitated by a thorough analysis of truffle genomic traits. In the ectomycorrhizal Laccaria bicolor, the expansion of gene families may have acted as a 'symbiosis toolbox'. This feature may however reflect evolution of this particular taxon and not a general trait shared by all ectomycorrhizal species. To get a better understanding of the biology and evolution of the ectomycorrhizal symbiosis, we report here the sequence of the haploid genome of T. melanosporum, which at approximately 125 megabases is the largest and most complex fungal genome sequenced so far. This expansion results from a proliferation of transposable elements accounting for approximately 58% of the genome. In contrast, this genome only contains approximately 7,500 protein-coding genes with very rare multigene families. It lacks large sets of carbohydrate cleaving enzymes, but a few of them involved in degradation of plant cell walls are induced in symbiotic tissues. The latter feature and the upregulation of genes encoding for lipases and multicopper oxidases suggest that T. melanosporum degrades its host cell walls during colonization. Symbiosis induces an increased expression of carbohydrate and amino acid transporters in both L. bicolor and T. melanosporum, but the comparison of genomic traits in the two ectomycorrhizal fungi showed that genetic predispositions for symbiosis-'the symbiosis toolbox'-evolved along different ways in ascomycetes and basidiomycetes.


Assuntos
Ascomicetos/genética , Evolução Molecular , Genoma Fúngico/genética , Simbiose/genética , Carboidratos , Elementos de DNA Transponíveis/genética , Carpóforos/metabolismo , Genes Fúngicos/genética , Genômica , Haploidia , Dados de Sequência Molecular , Análise de Sequência de DNA , Enxofre/metabolismo
20.
Biochem Biophys Res Commun ; 379(2): 489-93, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19116144

RESUMO

A yeast nuclear fraction of unknown composition, named TFIIIE, was reported previously to enhance transcription of tRNA and 5S rRNA genes in vitro. We show that TFIIIE activity co-purifies with a specific subset of ribosomal proteins (RPs) which, as revealed by chromatin immunoprecipitation analysis, generally interact with tRNA and 5S rRNA genes, but not with a Pol II-specific promoter. Only Rpl6Ap and Rpl6Bp, among the tested RPs, were found associated to a TATA-containing tRNA(Ile)(TAT) gene. The RPL6A gene also emerged as a strong multicopy suppressor of a conditional mutation in the basal transcription factor TFIIIC, while RPL26A and RPL14A behaved as weak suppressors. The data delineate a novel extra-ribosomal role for one or a few RPs which, by influencing 5S rRNA and tRNA synthesis, could play a key role in the coordinate regulation of the different sub-pathways required for ribosome biogenesis and functionality.


Assuntos
Regulação Fúngica da Expressão Gênica , RNA Polimerase III/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fatores de Transcrição TFIII/metabolismo , Transcrição Gênica , Imunoprecipitação da Cromatina , Mutação , Regiões Promotoras Genéticas , RNA Ribossômico 5S/genética , RNA de Transferência de Isoleucina/genética , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Fatores de Transcrição TFIII/genética , Fatores de Transcrição TFIII/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...